

HDS3

DIRECTIONAL SOLENOID VALVE

350 bar 80 l/min

TECHNICAL CATALOGUE

HYDRECO

INTRODUCTION

The HDS3 valves are solenoid directional valves, direct operated, with porting pattern compliant to ISO 4401-03 standards.

These valves are supplied with a zinc-nickel plating making them the perfect choice for mobile and environmental applications that require better protection.

Salt spray resistance up to 600 h (test according to UNI EN ISO 9227 and UNI EN ISO 10289 tests and standards).

The valve body is made with high strength iron castings with internal passages designed to minimize pressure drop.

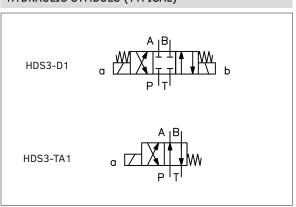
FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

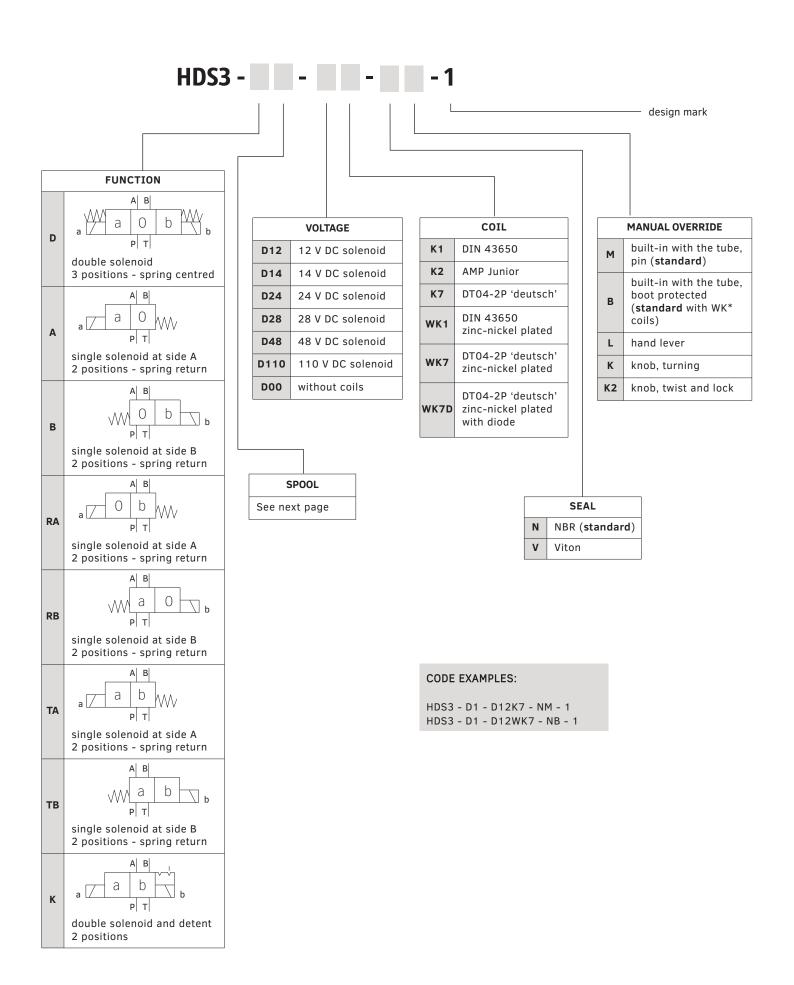
Using fluids at temperatures higher than 80 $^{\circ}$ C (180 $^{\circ}$ F) causes the accelerated degradation of seals as well as the fluid physical and chemical properties.

From a safety standpoint, temperatures above 55 $^{\circ}\text{C}$ (130 $^{\circ}\text{F})$ are not recommended.

OPERATING PARAMETERS


MAXIMUM OPERATING	P - A - B ports	350 bar	5000 psi
PRESSURE	T port	210 bar	3000 psi
FLOW RATE		80 l/min	21.1 gpm
MOUNTING SURFACE		ISO 4401-03-02-0-05 NFPA D03	

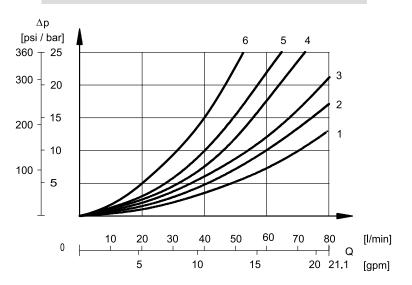
STEP	0 → 100%	50 ms
RESPONSE	100 →0%	40 ms


WEIGHT	single solenoid	1.5 kg	3.3 lbs
WEIGHT	double solenoid	2 kg	4.4 lbs

RANGE	ambient	-20 to +54 °C	-4 to +130 °F
TEMPERATURES	fluid	-20 to +82 °C	-4 to +180 °F
FLUID VISCOSITY	range	10-400 cSt	60 - 1900 SUS
TEOID VISCOSITI	recommended	25 cSt	120 SUS
FLUID CONTAMINATION		ISO 4406:1999 class 20/18/15	

HYDRAULIC SYMBOLS (TYPICAL)

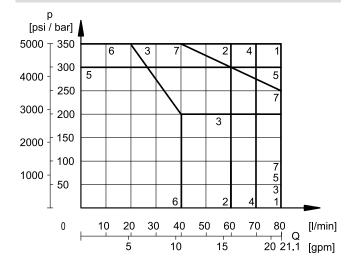
FUNCTION D	FUNCTION A	FUNCTION B
	a O O W	A B b b b
1	1 ZZZZZZW 2 ZZZZZZW 3 ZZZZZW 4 ZZZZZW	1 WIII I
WYTITETITITEW	FUNCTION RA	FUNCTION RB
		A B O D b
WLALF TIM	1	1 WX 7 1
11	2	2 W
12	3 7 T T W	3 W
18	4	4 W
<u> </u>		
20		
21	FUNCTION TA	FUNCTION TB
22	A B	A B
23		W a b
FUNCTION K 1 2 3 FUNCTION K	1	1 W T T T T T T T T T T T T T T T T T T



Flow characteristic curves obtained with mineral oil with viscosity of 36 cSt (170 sus) at 50 °C (122 °F) and 24V DC valve; the Δp values are measured between P and T (full loop) valve ports.

PRESSURE DROPS Ap-Q

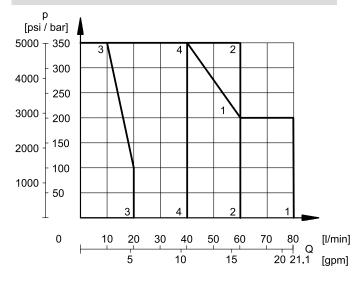
ENERGIZED POSITION


	FLOW DIRECTION			
TYPE	P→A	P→B	A→T	B→T
	С	URVES (N GRAP	Н
D1, A1, B1	2	2	3	3
D2, A2, B2	1	1	3	3
D3, A3, B3, RA3, RB3	3	3	1	1
D4, A4, B4, RA4, RB4	5	5	5	5
D5	2	1	3	3
D6	2	2	3	1
D7, D8	4	5	5	5
D9	2	2	3	3
D10	1	3	1	3
D11	2	2	1	3
D12, D17, D19	2	2	3	3
D18	1	2	3	3
D20, D22	1	5	2	
D21, D23	5	1		2
TA1, TB1	3	3	3	3
TA2, TB2	2	2	2	2
TA3, TB3	3	3		
K1, K2, K3	2	2	2	2

DE-ENERGIZED POSITION

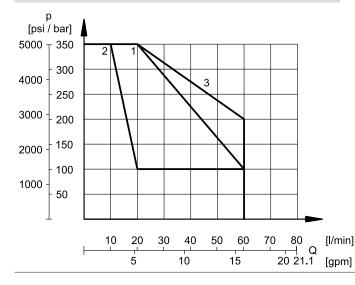
	FLOW DIRECTION				
TYPE	P→A	P→B	A→T	В→Т	P→T
		CURV	ES ON G	RAPH	
D2, A2, B2					2
D3, A3, B3, RA3, RB3			3	3	
D4, A4, B4, RA4, RB4					3
D5		4			
D6				3	
D7, D8			6	6	3
D10	3	3			
D11			3		
D18	4				
D22, D23				6	

PERFORMANCE CURVES - STANDARD OPERATION



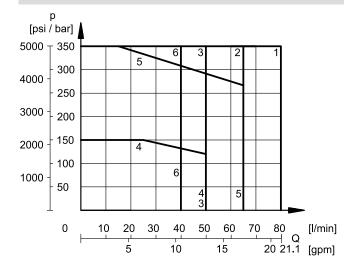
^{*} Performance obtained for a valve with A and B lines connected the one to the piston-side chamber and the other to the rod-side chamber of a double-acting cylinder with area ratio 2:1.

TYPE	CUI	RVE
ITPE	$P \rightarrow A$	$P \rightarrow B$
D1, A1, B1	1	1
D2, A2, B2	2	2
D3, A3, B3	3	3
D4, A4, B4	4	4
D5	5	5
D6	4	6
D7	4	4
D8	4	4
D9	1	1
D10	1	1
D11	4	6
D12	1	1
D17	4	4


	CURVE		
TYPE			
	P→A	P→B	
D18	5	5	
D19	4	4	
D20	6*	6	
D21	6	6*	
D22, D23	6	6	
TA1, TB1	1	1	
TA2, TB2	7	7	
TA3, TB3	2	2	
TA4	1	-	
K1	1	1	
K2	7	7	
К3	1	1	

PERFORMANCE CURVES - REVERSED SPOOLS

TYPE	CURVE
RA1	1
RA2	2
R3	3
RA4	4


PERFORMANCE CURVES - 3-PORTS OPERATION

TYPE	CURVE
TA1 backpressure in A TB1 backpressure in B	1
TA2 backpressure in A TB2 backpressure in B	1
TA1 backpressure in B TB1 backpressure in A	2
TA2 backpressure in B TB2 backpressure in A	3

PERFORMANCE CURVES - AC RECTIFIER CONNECTORS

TYPE	CURVE		
ITPE	P→A	P→B	
D1, A1, B1	2	2	
D2, A2, B2	3	3	
D3, A3, B3	4	4	
D4, A4, B4	2	2	
D9	5	5	
TA1, TB1	6	6	
K1	1	1	

ELECTRICAL DATA

Solenoids are made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a retainer, and can be indexed 360° , to suit the clearance space.

It is possible to feed D48 and D110 coils with alternating current (50 or 60 Hz) using connectors with built-in Graetz bridge rectifier. Consider a reduction of the operating limits. (see diagram in page 6)

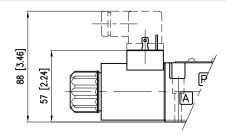
The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

Use coil codes in the table below to order spare parts.

DUTY CYCLE	100%			
MAXIMUM SWITCH ON	10,000 cycles/hr			
SUPPLY VOLTAGE FLUC	± 10% Vnom			
ELECTROMAGNETIC COMPATIBILITY (EMC)	2014/30/EU			
LOW VOLTAGE		2014/35/EU		
PROTECTION CLASS FOR	copper wire	class H (180 °C)		
INSULATION	coil	class F (155 °C)		

(values ± 10%)

	Nominal voltage	Resistance at 20°C	Current consumpt.	Power consumpt	Coil code					
	[V]	[Ω]	[A]	[W]	K1	К2	К7	WK1	WK7	WK7D
D12	12	4,4	2,72	32,7	H1903080	H1903100	H1902940	H1903590	H1903580	H1903600
D14	14	7,2	1.93	27	H1903086					
D24	24	18,6	1,29	31	H1903081	H1903101	H1902941	H1903591	H1903581	H1903601
D26	26,4	21,8	1,21	32				H1903599	H1903589	
D28	28	26	1,11	31	H1903082					
D48	48	78,6	0,61	29,5	H1903083					
D110	110	423	0,26	28,2	H1903464					

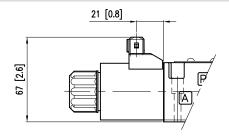


Declared IP degrees are intended according to EMC 2014/30/EU, only for both valve and connectors of an equivalent IP degree, installed properly.

WK1, WK7 and WK7D coils reach a better IP degree than standard coils thanks to the zinc-nickel plating and to some constructive measures. The valves with these coils have a salt spray resistance up to 600 hours (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289).

Mating connectors are not included in solenoid valves delivery. Connectors for K1 and WK1 coils can be ordered separately.

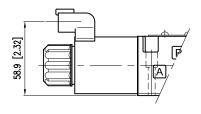
K1



DIN 43650 (EN 175301-803)

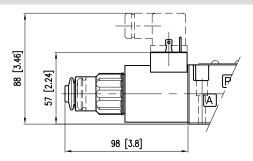
Mating connectors type ISO 4400 / DIN 43650 (EN 175301-803).

IP degree of electrical connection: IP65 IP degree of whole valve: IP 65


K2

AMP Junior

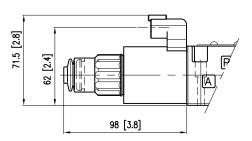
IP degree of electrical connection: IP65/IP67 IP degree of whole valve: IP 65


Κ7

DEUTSCH DT04 MALE

IP degree of electrical connection: IP65/IP67 IP degree of whole valve: IP 65

WK1


DIN 43650 (EN 175301-803)

Zinc-nickel plated coil.

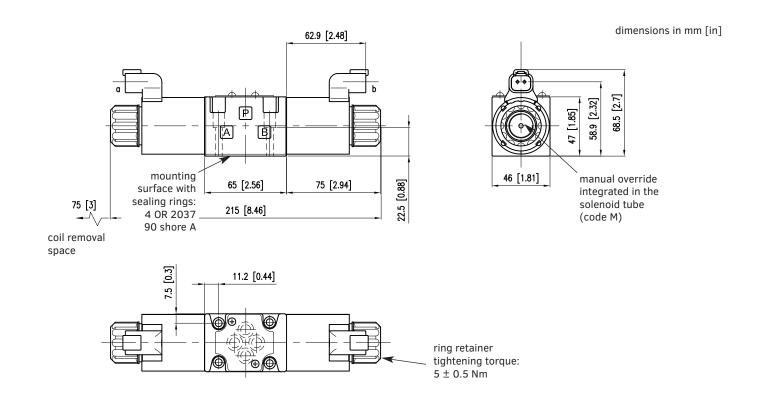
IP degree of electrical connection: IP66 IP degree of whole valve: IP66

The pin for manual override is boot-protected (code B).

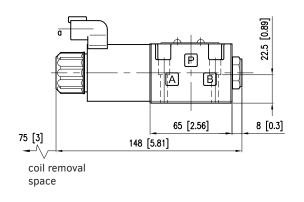
WK7 / WK7D

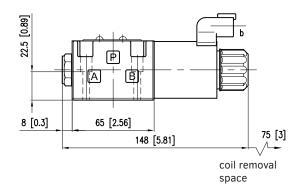
DEUTSCH DT04 MALE

Zinc-nickel plated coil.


IP degree of electrical connection: IP66/IP68/IP69 -

IP degree of whole valve: IP66/IP68/IP69 IP degree according to ISO 20653: IP69K


The pin for manual override is boot-protected (code B).


HDS3 DOUBLE SOLENOID (K7 COIL)

HDS3 SINGLE SOLENOID SIDE A (K7 COIL)

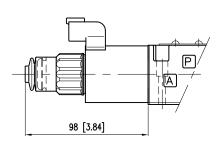
HDS3 SINGLE SOLENOID SIDE B (K7 COIL)

Fastening bolts:

4 SHCS M5x30 - ISO 4762 - torque 5 Nm (A 8.8)

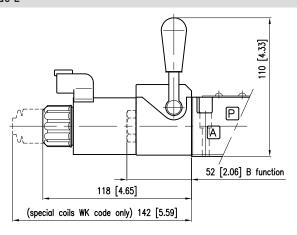
Threads of mounting holes: M5x10

HDS3 - Manual Overrides



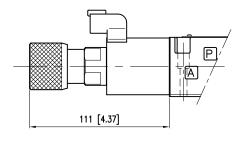
The standard valve has override pins integrated in the tube. The operation of this control must be executed with a suitable tool, carefully not to damage the sliding surface.

Further manual overrides are available, entering the proper code in the model number.

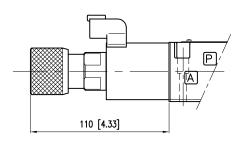

OVERRIDE PINS INTEGRATED THE TUBE, BOOT PROTECTED

Code B

HAND LEVER


Code L

The lever device is always placed on side A. Valves with WK coils are equipped with the boot for solenoid tube protection.


KNOB, TURNING

Code K

KNOB, TWIST AND LOCK

Code K2

HDS3 - Installation

IP DEGREE TIPS

The technical reference standard for IP degree is IEC 60529, which classifies and rates the degree of protection provided by equipments and electrical enclosures against intrusions.

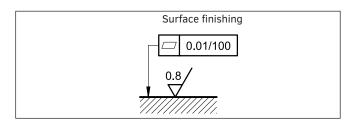
The first digit (6) concerns the protection from solid particles (body parts to dust).

The second digit of the IP rating concerns the liquid ingress protection. It indicates three different types of atmospheric agents from which provide protection:

Values from 1 to 6 \rightarrow water jets.

Values 7 and 8 \rightarrow immersion.

Value 9 \rightarrow high pressure and high temperature water jets.


This means that IP66 covers all the lower steps, rating IP68 covers IP67 but not IP66 and lower. Instead, IP69 does not cover any of them. Whether a device meets two types of protection requirements it must be indicated by listing both separated by a slash. (E.g. a marking of an equipment covered both by temporary immersion and water jets is IP66/IP68).

INSTALLATION

These valves can be installed in any position without impairing correct operation.

Ensure that there is no air in the hydraulic circuit.

Valves are fixed by means of screws or tie rods on a flat surface with planarity and roughness equal to or better than those indicated in the relative symbols. If minimum values are not observed, fluid can easily leak between the valve and support surface.

Supported by a worldwide network

CONTACT INFORMATION

EMEA

GERMANY Hydreco Hydraulics GmbH, Straelen (NRW) **ITALY** Hydreco Hydraulics Italia Srl, Vignola (MO) NORWAY Hydreco Hydraulics Norway AS, Nittedal UK Hydreco Hydraulics Ltd, Poole, Dorset

+49 283494303-41

info-de@hydreco.com sales-it@hydreco.com

+39 059 7700411 +47 22909410

+44 (0) 1202 627500

post-no@hydreco.com info-uk@hydreco.com

AMERICAS

USA Hydreco Inc, Rock Hill (SC) LATIN AMERICA

+1 704 295 7575 +1 704 572 6266

sales-us@hydreco.com

sales-es@hydreco.com

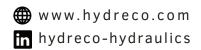
APAC

Hydreco Hydraulics Pty Ltd, Seven Hills (NSW) **AUSTRALIA AUSTRALIA** Hydreco Hydraulics Pty Ltd, Smeaton Grange (NSW) **AUSTRALIA** Hydreco Hydraulics Pty Ltd, Welshpool (WA) INDIA Hydreco Hydraulics India Private Ltd, Bangalore

+61 2 9838 6800 +61 2 4647 6577

+61 8 9377 2211

+91 80 67656300


sales-au@hydreco.com

au-smeatongrange@hydreco.com

reception-wa@hydreco.com

sales-in@hydreco.com

