HY2-LN
EXTERNAL GEAR PUMPS
GROUP 2
LOW NOISE
From 4.5 to 31.7 cc/rev
Up to 260 bar
Hydco is pleased to introduce a brand new range of low noise gear pumps. Based on the experience and knowledge acquired over many years of engineering and manufacturing, the HY-LN Series is provided with an aluminium alloy housing, two gear wheels with inclined teeth supported by sleeve bearings and cast iron flange and cover. The HY-LN series, available as pumps and motors, offers high efficiency, low noise level and can be applied in standard and heavy duty application, thanks to the high reliability and the accuracy of design and production. The pumps can be supplied as single, or as multiple units with a huge variety of options on flanges, shafts and ports, providing the right setup on each application. Feel free to contact your Hydco representative to find out more and to get proper support in your selection.

Displacements

From 4.5 cm³/rev to 31.7 cm³/rev
From 0.27 in³/rev to 1.93 in³/rev

Pressures

Max continuous 260 bar (3770 psi)
Max intermittent 290 bar (4200 psi)
Max peak 310 bar (4500 psi)

Max Speed

4000 rpm

Components

1 - Cast Iron Flange
2 - Gaskets
3 - Gears
4 - Bushings
5 - Shaft Seal
6 - Aluminium Alloy Body
7 - Cast Iron Cover

P/N
H200SP004C
P = Pump or Motor
PUMP C11-E20T2
S/N
C21 1544

Serial number
C21 1544
Arrow
QR Code

Abbreviate model code
Eg. pump 11.2 cc - European Standard Clockwise

Made in Italy

HYDRECO

Contact

Feel free to contact your Hydco representative to find out more and to get proper support in your selection.
The HY2-LN Series thanks to gears with inclined teeth offer a reduction of pulsations:

![HY2 - Standard Series Graph](image1)

![HY2 - LN Series Graph](image2)

Also the HY2-LN gear pumps offer a noise level reduction from 2 to 8 dB(A), compared with the standard gear pumps.

Test:
- Pump displacement \(14.6 \text{ cc} = 0.89 \text{ (in}^3/\text{rev)}\)
- Rotation speed 1800 r.p.m.
ORDERING CODE IDENTIFICATION FOR SINGLE PUMPS

Example
HY-PLNA2-C08-E20T2-FE2/2S-1NS
ORDERING CODE IDENTIFICATION FOR MULTIPLE PUMPS

Example:
TANDEM PUMP: HY-PLNA2-C08-E20T2-FE2/2S-1NS + LNA2-06-FE2/2S-1N

TRIPLE PUMP: HY-PLNA2-C08-E20T2-FE2/2S-1NS + LNA2-06-FE2/2S-1N + LNA2-06-FE2/2S-1N
HY2-LN Series - DISPLACEMENT RANGE & INSTALLATION DATA

<table>
<thead>
<tr>
<th>GROUP</th>
<th>SIZE</th>
<th>DISPLACEMENT cm³/rev (in³/rev)</th>
<th>MAX PRESSURE bar (psi)</th>
<th>SPEED rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY2-LN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>4.5 (0.27)</td>
<td>240 (3480) 270 (3910) 290 (4200)</td>
<td>600 4000</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>6.5 (0.4)</td>
<td>240 (3480) 270 (3910) 290 (4200)</td>
<td>600 4000</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>8.2 (0.5)</td>
<td>240 (3480) 270 (3910) 290 (4200)</td>
<td>600 4000</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11.3 (0.67)</td>
<td>240 (3480) 270 (3910) 290 (4200)</td>
<td>600 4000</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14.6 (0.89)</td>
<td>240 (3480) 270 (3910) 290 (4200)</td>
<td>500 3500</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16.9 (1.03)</td>
<td>240 (3480) 270 (3910) 290 (4200)</td>
<td>500 3200</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20.1 (1.23)</td>
<td>210 (3040) 240 (3480) 260 (3770)</td>
<td>500 3000</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>22.1 (1.34)</td>
<td>200 (2900) 230 (3330) 250 (3620)</td>
<td>500 2700</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25.2 (1.54)</td>
<td>180 (2610) 210 (3040) 230 (3330)</td>
<td>500 2500</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>28 (1.72)</td>
<td>160 (2320) 190 (2750) 210 (3040)</td>
<td>500 2200</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>31.7 (1.93)</td>
<td>150 (2170) 180 (2610) 200 (2900)</td>
<td>500 2000</td>
</tr>
</tbody>
</table>

The data in the table refer to unidirectional pumps and motors. The maximum pressures of reversible pumps and motors are 15% lower than unidirectional ones.

For different working conditions please contact Hydreo technical support.

GENERAL CHARACTERISTICS

ROTATION DIRECTION

- Clockwise Rotation
- Anti-clockwise Rotation
- Reversible Rotation

DEFINITION OF PRESSURES

- \(p_1 \): Max continuous pressure
- \(p_2 \): Max intermittent pressure
- \(p_3 \): Max peak pressure

\[p \text{ (bar)} = \text{Max 20 sec} \]
\[p \text{ (psi)} = \text{Max 8 sec} \]
GENERAL CHARACTERISTICS

It is essential that pumps are installed so that they can always fill with fluid. ‘HY’ Series pumps inlet porting is designed to facilitate full volume fill but the following machine design recommendations should be followed.

Direction of rotation (Viewed from shaft end) Clockwise (C) – Anticlockwise (A) – Reversible (R)

Range inlet pressure – pump 0.7 ÷ 3 bar (10 ÷ 43 psi)

Max back pressure on the unidirectional motors and reversible with internal drainage
- P_1 (continue) max 5 bar (72 psi)
- P_2 (for 20 sec) max 8 bar (115 psi)
- P_3 (for 5 sec) max 15 bar (215 psi)

Reversible Motor Max pressure in drain 5 bar

Temperature fluid (MIN, MAX, PEAK) °C
- -25, 80, 100 NBR
- -25, 110, 125 VITON

Range of viscosity From 10 to 100 mm²/s (cSt) IDEAL
Up to 750 mm²/s (cSt) RECOMMENDED
Up to 1000 mm²/s (cSt) START

Fluid type Mineral oil

RECOMMENDED FILTRATION

<table>
<thead>
<tr>
<th>Working pressure bar (psi)</th>
<th>Δp</th>
<th>Class contamination NAS 1638</th>
<th>Class contamination ISO 4406:1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta p < 140$ (2030)</td>
<td>10</td>
<td>21/19/16</td>
<td>20/18/15</td>
</tr>
<tr>
<td>140 (2030) < Δp</td>
<td>9</td>
<td>20/18/15</td>
<td>19/17/14</td>
</tr>
<tr>
<td>$\Delta p > 210$ (3040)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q = flow rate (L/min)
V = displacement (cm³/rev)
n = speed (min⁻¹)
M = torque (Nm)
P = power (kW)
Δp = pressure (bar)

PERFORMANCE

<table>
<thead>
<tr>
<th>PUMPS</th>
<th>MOTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_V = volumetric efficiency</td>
<td>≈ 0.96</td>
</tr>
<tr>
<td>η_{hm} = hydro-mechanical efficiency</td>
<td>≈ 0.88</td>
</tr>
<tr>
<td>η_t = total efficiency</td>
<td>≈ 0.84</td>
</tr>
</tbody>
</table>
DETERMINATION OF A PUMP

\[
Q_{\text{theor}} = \frac{V \times n}{1000} \text{ (l/min)} \\
M_{\text{real}} = \frac{M_{\text{theor}}}{\eta_{\text{hm}}} \text{ (Nm)} \\
P_{\text{OUT}} = \frac{\Delta p \times Q}{600} \text{ (kW)}
\]

DETERMINATION OF A MOTOR

\[
Q_{\text{real}} = Q_{\text{theor}} \times \eta_{v} \\
M_{\text{real}} = M_{\text{theor}} \times \eta_{\text{hm}} \\
P_{\text{IN}} = \frac{P_{\text{OUT}}}{\eta_{t}}
\]

PUMP SELECTION

Curves at 40°C - fluid viscosity 46 mm²/sec

Example

Working conditions:
Pump 8.2cc
Speed 2000 r.p.m.
Pressure: 150 bar [2170 psi]
Motor: 5.3 kW

OUTPUT FLOWS are theoretical. Generally volumetric efficiencies are in excess of 95%.
Please contact your Hydreco representative for specific working conditions.

INPUT POWERS are theoretical taking into account average efficiencies.

NOTE:

Diagrams provide approximate selection data
MOTOR SELECTION
Curves at 40°C – fluid viscosity 46 mm²/sec - 2000 r.p.m.

Example
Working conditions:
Torque needed: 16 Nm
Available flow 20 litre/min
Necessary motor: 8 (8.2 cc)
Pressure working: 105 bar
Speed: 1720 rev/min

NOTE:
Diagrams provide approximate selection data

MOTOR SELECTION
Curves at 40°C – fluid viscosity 46 mm²/sec - 1500 r.p.m.

Example
Working conditions:
Torque needed: 35 Nm
Available flow 35 litre/min
Necessary motor: 22 (22 cc)
Pressure working: 105 bar
Speed: 1550 rev/min

NOTE:
Diagrams provide approximate selection data
EUROPEAN standard CODES

<table>
<thead>
<tr>
<th>FLANGE</th>
<th>SHAFT</th>
<th>AVAILABLE DISPLACEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E20 = European flange pilot Ø36.5</td>
<td>T2 = Tapered shaft 1:8 M12</td>
<td>All the displacements</td>
</tr>
</tbody>
</table>

GERMAN standard CODES

<table>
<thead>
<tr>
<th>FLANGE</th>
<th>SHAFT</th>
<th>AVAILABLE DISPLACEMENT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>G20 = German flange pilot Ø 80</td>
<td>T6 = Tapered shaft 1:5 M12</td>
<td>14 and 16 cc</td>
</tr>
</tbody>
</table>

* For other configurations than those indicated, please contact Hydreco technical support. Other displacements can be evaluated on request.

AMERICAN standard CODES

<table>
<thead>
<tr>
<th>FLANGE</th>
<th>SHAFT</th>
<th>AVAILABLE DISPLACEMENT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = SAE A flange Ø82</td>
<td>09T = Splined shaft 9T 16/32</td>
<td>4.5 to 28 cc</td>
</tr>
<tr>
<td>A = SAE A flange Ø82</td>
<td>11T = Splined shaft 11T 16/32</td>
<td>16 - 20 - 25 - 28</td>
</tr>
<tr>
<td>A = SAE A flange Ø82</td>
<td>058P = Parallel shaft Ø15.85</td>
<td>4.5 to 28 cc</td>
</tr>
</tbody>
</table>

* For other configurations than those indicated, please contact Hydreco technical support. Other displacements can be evaluated on request.
FLANGES OPTIONS

Code E20 EUROPEAN

<table>
<thead>
<tr>
<th>Dimension (mm)</th>
<th>Dimension (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.708</td>
</tr>
<tr>
<td>12</td>
<td>0.472</td>
</tr>
<tr>
<td>90</td>
<td>3.543</td>
</tr>
<tr>
<td>71.5</td>
<td>2.814</td>
</tr>
<tr>
<td>32.2</td>
<td>1.267</td>
</tr>
<tr>
<td>114.486</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.354</td>
</tr>
</tbody>
</table>

Code G20 GERMAN

<table>
<thead>
<tr>
<th>Dimension (mm)</th>
<th>Dimension (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.708</td>
</tr>
<tr>
<td>13.5</td>
<td>0.531</td>
</tr>
<tr>
<td>90</td>
<td>3.543</td>
</tr>
<tr>
<td>72</td>
<td>2.834</td>
</tr>
<tr>
<td>34.5</td>
<td>1.358</td>
</tr>
<tr>
<td>18.446</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.354</td>
</tr>
</tbody>
</table>

Code A SAE (A) - 2 BOLTS

<table>
<thead>
<tr>
<th>Dimension (mm)</th>
<th>Dimension (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.708</td>
</tr>
<tr>
<td>130</td>
<td>5.118</td>
</tr>
<tr>
<td>106.2</td>
<td>4.181</td>
</tr>
<tr>
<td>10</td>
<td>0.393</td>
</tr>
<tr>
<td>6.2</td>
<td>0.244</td>
</tr>
<tr>
<td>92.55</td>
<td>3.651</td>
</tr>
<tr>
<td>112</td>
<td>4.409</td>
</tr>
<tr>
<td>11.5</td>
<td>0.444</td>
</tr>
</tbody>
</table>

HY-LN Series - FLANGES & SHAFTS
SHAFT OPTIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Max Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>09T</td>
<td>SAE (A) 5/8” spline</td>
<td>100 Nm (885 lbf in)</td>
</tr>
<tr>
<td></td>
<td>Involute Spline 9 teeth – 16/32 DP Flat root, side fit 30 deg pressure angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOUNTING FACE</td>
<td></td>
</tr>
<tr>
<td>11T</td>
<td>SAE (A) 3/4” spline</td>
<td>170 Nm (1505 lbf in)</td>
</tr>
<tr>
<td></td>
<td>Involute Spline 11 teeth – 16/32 DP Flat root, side fit 30 deg pressure angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOUNTING FACE</td>
<td></td>
</tr>
<tr>
<td>058P</td>
<td>SAE (A) 5/8” parallel</td>
<td>70 Nm (620 lbf in)</td>
</tr>
<tr>
<td></td>
<td>MOUNTING FACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ø 15.5 x 0.451</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/4”-28UNF</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>European Tapered 1:8</td>
<td>140 Nm (1240 lbf in)</td>
</tr>
<tr>
<td></td>
<td>1:8 TAPER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOUNTING FACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ø 14.7 x 0.597 x 0.561</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>German Tapered 1:5</td>
<td>140 Nm (1240 lbf in)</td>
</tr>
<tr>
<td></td>
<td>1:5 TAPER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOUNTING FACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ø 13.3 x 0.459 x 0.591</td>
<td></td>
</tr>
</tbody>
</table>
BSPP THREADED PORTS (B)
Compliant with ISO 228

<table>
<thead>
<tr>
<th>Ordering Code</th>
<th>Dimension mm (inches)</th>
<th>Tightening Torque Nm [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>1/2”</td>
<td>19 (0.748)</td>
</tr>
<tr>
<td>3</td>
<td>3/4”</td>
<td>24 (0.944)</td>
</tr>
<tr>
<td>4</td>
<td>1”</td>
<td>30 (1.181)</td>
</tr>
</tbody>
</table>

STANDARD PORT CONFIGURATION

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUCTION</th>
<th>PRESSURE</th>
<th>POSITION</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2/2S</td>
<td>2 = 1/2” BSPP</td>
<td>2 = 1/2” BSPP</td>
<td>S = SIDE</td>
<td>4 to 11</td>
</tr>
<tr>
<td>B3/2S</td>
<td>3 = 3/4” BSPP</td>
<td>2 = 1/2” BSPP</td>
<td>S = SIDE</td>
<td>14 to 31</td>
</tr>
<tr>
<td>B2/2R</td>
<td>2 = 1/2” BSPP</td>
<td>2 = 1/2” BSPP</td>
<td>R = REAR</td>
<td>4 to 11</td>
</tr>
<tr>
<td>B3/2R</td>
<td>3 = 3/4” BSPP</td>
<td>2 = 1/2” BSPP</td>
<td>R = REAR</td>
<td>14 to 31</td>
</tr>
</tbody>
</table>

SAE THREADED PORTS (U)
Compliant with SAE J514

<table>
<thead>
<tr>
<th>Ordering Code</th>
<th>Dimensions mm (inches)</th>
<th>Tightening Torque Nm [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>25</td>
<td>7/8”</td>
<td>14 UNF</td>
</tr>
<tr>
<td>3</td>
<td>1 1/16”</td>
<td>12 UNF</td>
</tr>
</tbody>
</table>

STANDARD PORTS CONFIGURATION

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUCTION</th>
<th>PRESSURE</th>
<th>POSITION</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U25/25S</td>
<td>25 = 7/8” 14 UNF</td>
<td>25 = 7/8” 14 UNF</td>
<td>S = SIDE</td>
<td>4 to 11</td>
</tr>
<tr>
<td>U3/25S</td>
<td>3 = 1 1/16” 12 UNF</td>
<td>25 = 7/8” 14 UNF</td>
<td>S = SIDE</td>
<td>14 to 31</td>
</tr>
<tr>
<td>U25/25R</td>
<td>25 = 7/8” 14 UNF</td>
<td>25 = 7/8” 14 UNF</td>
<td>R = REAR</td>
<td>4 to 11</td>
</tr>
<tr>
<td>U3/25R</td>
<td>3 = 1 1/16” 12 UNF</td>
<td>25 = 7/8” 14 UNF</td>
<td>R = REAR</td>
<td>14 to 31</td>
</tr>
</tbody>
</table>

INLET PORTS = For multiple pumps with single inlet please contact Hydreco technical support
EUROPEAN FLANGED PORTS (FE)

<table>
<thead>
<tr>
<th>Ordering Code</th>
<th>Dimensions mm (inches)</th>
<th>Tightening Torque Nm [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>13 (0.511)</td>
<td>30 (1.181)</td>
</tr>
<tr>
<td>3</td>
<td>20 (0.787)</td>
<td>40 (1.574)</td>
</tr>
</tbody>
</table>

GERMAN FLANGED PORTS (FG)

<table>
<thead>
<tr>
<th>Ordering Code</th>
<th>Dimensions mm (inches)</th>
<th>Tightening Torque Nm [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>25</td>
<td>15 (0.59)</td>
<td>35 (1.377)</td>
</tr>
<tr>
<td>3</td>
<td>20 (0.787)</td>
<td>40 (1.574)</td>
</tr>
</tbody>
</table>

STANDARD PORTS CONFIGURATION

FE2/2S

- **Code**: FE2/2S
- **Suction**: 2 = Ø13 mm
- **Pressure**: 2 = Ø13 mm
- **Position**: SIDE (only)
- **Size**: 4 to 8

FE3/2S

- **Code**: FE3/2S
- **Suction**: 3 = Ø20 mm
- **Pressure**: 2 = Ø13 mm
- **Position**: SIDE (only)
- **Size**: 11 to 31

NOTE: For pump HYC2 type 11 PORTS SUCTION AND PRESSURE CODE FE2/2S

FG3/25S

- **Code**: FG3/25S
- **Suction**: 3 = Ø20 mm
- **Pressure**: 25 = Ø15 mm
- **Position**: SIDE (only)
- **Size**: ALL

INLET PORTS = For multiple pumps with single inlet please contact Hydreco technical support.
<table>
<thead>
<tr>
<th>PORTS TYPE</th>
<th>B</th>
<th>FE</th>
<th>FG</th>
<th>U</th>
<th>B</th>
<th>FE</th>
<th>FG</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SINGLE PUMPS

UNIDIRECTIONAL COVER

REVERSIBLE COVER

<table>
<thead>
<tr>
<th>GROUP</th>
<th>PUMP / MOTOR SIZE</th>
<th>H (mm)</th>
<th>WEIGHT (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY2-LN</td>
<td>04</td>
<td>48.6 (1.913)</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>51.5 (2.027)</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>54.0 (2.125)</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>58.4 (2.299)</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>63.2 (2.488)</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>66.6 (2.622)</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>71.3 (2.807)</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>82.0 (3.228)</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>86.6 (3.409)</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>91.0 (3.582)</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>96.1 (3.783)</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Indicative weights - European flange and 1:8 tapered shaft

Available rear ports: BSPP and SAE (see page 12)
DIMENSIONS (side view)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>PUMP SIZE</th>
<th>H (mm) (inches)</th>
<th>PUMP TYPE</th>
<th>H (mm) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY2-LN</td>
<td>04</td>
<td>48.6 (1.913)</td>
<td>20</td>
<td>71.3 (2.807)</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>51.5 (2.027)</td>
<td>22</td>
<td>82.0 (3.228)</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>54.0 (2.125)</td>
<td>25</td>
<td>86.6 (3.409)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>58.4 (2.299)</td>
<td>28</td>
<td>91.0 (3.582)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>63.2 (2.488)</td>
<td>31</td>
<td>96.1 (3.783)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>66.6 (2.622)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reduced inlets provide overall systems savings by reducing the cost of redundant inlet hose and fittings.

For the correct choice or other combinations please contact Hydreco technical support.

NOTE: multiple pumps with common inlet will be provided with a special body.

DIMENSIONS (side view)

The HY2-LN intermediate pumps include the intermediate flange and coupling to easily assemble tandem or multiple pumps.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>PUMP SIZE</th>
<th>H mm (inches)</th>
<th>PUMP SIZE</th>
<th>H mm (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY2-LN</td>
<td>04</td>
<td>48.6 (1.913)</td>
<td>20</td>
<td>71.3 (2.807)</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>51.5 (2.027)</td>
<td>22</td>
<td>82.0 (3.228)</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>54.0 (2.125)</td>
<td>25</td>
<td>86.6 (3.409)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>58.4 (2.299)</td>
<td>28</td>
<td>91.0 (3.582)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>63.2 (2.488)</td>
<td>31</td>
<td>96.1 (3.783)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>66.6 (2.622)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORDERING CODE IDENTIFICATION FOR ISOLATED INTERMEDIATE PUMPS

- **L** - Low noise
- **N** - NBR (standard)
- **A** - Aluminium
- **C** - cast iron
- **2** - Group 2

Sense of Rotation
- **C** - Clockwise (standard)
- **A** - Anti-clockwise
- **R** - Reversible

Displacement
- **04** = 4.5 cm³/rev (0.27 in³/rev)
- **06** = 6.5 cm³/rev (0.4 in³/rev)
- **08** = 8.2 cm³/rev (0.5 in³/rev)
- **11** = 11.3 cm³/rev (0.67 in³/rev)
- **14** = 14.6 cm³/rev (0.89 in³/rev)
- **16** = 16.9 cm³/rev (1.03 in³/rev)
- **20** = 20.1 cm³/rev (1.23 in³/rev)
- **22** = 22 cm³/rev (1.34 in³/rev)
- **25** = 25.2 cm³/rev (1.54 in³/rev)
- **28** = 28.2 cm³/rev (1.72 in³/rev)
- **31** = 31.7 cm³/rev (1.93 in³/rev)

Hydraulic ports position
- **S** - Side
- **R** - Rear

- **IN/OUT** (see pages 12 & 13)

Example

LNA2–C06–FE2/2S–1N
HOW TO MAKE TANDEM PUMPS USING AN INTERMEDIATE PUMP (side view)

A. Loosen, and remove, the clamp screws and remove the cover.

B. Connect the intermediate pump

C. Assembling the tandem pump.
 Refit the clamp screws.
 SCREWS TIGHTENING TORQUE = 60±2Nm
 For length of closure screws = see page 15
UNITS ROTATING CHANGING INSTRUCTIONS

A. Clean the pump externally with care

B. Coat the sharp edges of the drive shaft (2) with adhesive tape and smear a layer of clean grease on the shaft and extension to avoid damaging the lip of the shaft seal when removing the mounting flange.

C. Lay the pump on the working area in order to have the mounting flange turned upside.

D. Loosen, and remove, the clamp screws (1).

E. Remove the mounting flange (3), taking care to keep the flange as straight as possible during removal.

F. Ensure that while removing the front mounting flange, the drive shaft and other components remain in position.

G. Ease the drive gear (2) up to facilitate removal of bearings (4), taking care that the precision ground surfaces do not become damaged, and removed the drive gear.

H. Remove the driven gear (2) without overturning. The rear flange has not to be removed.

I. Re-locate the driven gear in the position previously occupied by the drive gear (2).

J. Re-locate the drive gear (2) in the position previously occupied by the driven gear (5).

K. Re-locate the bushing (4) without rotating. Refit the front mounting flange (3) turned by 180°.

L. Refit the clamp screws (1). SCREW TIGHTENING TORQUE = 60±2Nm

M. Check that the pump rotates freely when the drive shaft (2) is turned by hand.

N. If not a pressure plate seal may be pinched.

O. The pump is ready for installation with the new direction of rotation.
HY-LN Series - Valves Options

Anticavitation Valve (AV)

Internal Drain (ID)

Relief Valve with External Drain (adjustable setting)

REV

Relief Valve with Internal Drain (adjustable setting)

RIV

Ordering example (add at the end of the pump or motor code): RIVB

<table>
<thead>
<tr>
<th>Spring CODE</th>
<th>Pressure setting range bar (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>51 – 90 (740 – 1300)</td>
</tr>
<tr>
<td>B</td>
<td>91 – 130 (1320 – 1880)</td>
</tr>
<tr>
<td>G</td>
<td>131 – 205 (1900 – 2970)</td>
</tr>
</tbody>
</table>

Pressure setting range

Relief Valve Internal Drain (adjustable setting)